Guide To Vectors
  • Introduction
  • Guide to this Book
  • API documentation
  • Python SDK Documentation
  • Learn about vectors
    • 🌱Introduction to vectors
      • 🌱Applications of vectors
        • 🌱Vectors for classification
      • 🌱Limitations of vectors
    • 🌱What is vector search?
      • 🌱How to vector search
      • 🌱How to build image to text search using code
      • 🧍Try vector search with playground!
      • 💻Vector search with code
    • 🌱Terminology Guide
  • Unlock Vector AI
    • 🔍Inserting Into Vector AI
      • 🧍Inserting with playground
      • 💻Inserting with API
        • 💻Inserting with API - encoding while inserting (recommended)
        • 💻Inserting with API - encoding before inserting
        • 💻Inserting with API - encoding after inserting
      • 🧍How to check insertion succeeded
    • 🔍Searching with Vector AI
      • 🌱How to search with the playground
      • 🌱Combining with traditional search
        • 🧍How to combine exact text search with vector search
        • 💻How to add exact text search to vector search
      • 🌱Personalisation with vector search
        • 💻Personalised search/recommendations with vector search
      • 🌱Chunk search
        • 💻How To Chunk Search
        • 💻How To Do MultiVector Chunk Search
        • 💻How to do multi step chunk search
      • 🧍How to diversify search results
    • 🔍Clustering
      • 🌱Clustering Vectors From Deep Learning models
    • 🔍Aggregation
      • 💻Writing Your First Aggregation
      • 💻Publishing Your First Aggregation
    • 🔍Experimentation
      • 🌱Vector Evaluation
        • 🌱Evaluate Vector Bias
    • 🔍Jobs
      • 💻Tagging Jobs
      • 💻Chunking Jobs
      • 💻Encoding Jobs
      • 🧍List all jobs (active and inactive)
    • 🔍Encoding
    • 🔍Maintenance & Monitoring
      • 🧍How to view your collections
      • 💻How to share your collections
      • 💻How to back up your collections
      • 💻How to change name of a collection field
      • 💻How to change the schema of a collection
      • 💻How to remove a field in a collection
      • 💻How to request a read API key
  • Tutorials
    • 💻How to turn data into Vectors (code)
      • 💻How to turn text into Vectors
      • 💻How to turn images Into Vectors
      • 💻How to turn audio into Vectors
    • 💻Image Search For Developers
    • 💻How To Combine Different Vectors For Search
    • 💻How To Combine Different Vectors With Exact Matching Text
    • 💻Semantic NLP search with FAISS and VectorHub
  • ABOUT
    • Credits
    • Philosophy
    • Glossary
Powered by GitBook
On this page

Was this helpful?

  1. Unlock Vector AI

Clustering

Introduction To Clustering

Previous🧍How to diversify search resultsNextClustering Vectors From Deep Learning models

Last updated 4 years ago

Was this helpful?

Assumed Knowledge: Vectors, Vector Search Target Audience: Data scientist, Vector enthusiasts, Business analysts, Executives Reading Time: 3 minutes

Clustering: Interpret these vectors and your data to different buckets and interpret them more easily when combined with aggregation. Clustering provides a simple way to group vectors and metadata so that those with similar properties can be easily interpreted.

When we cluster, we can identify the key attributes and have a new way to observe our data.

If you are interested in an example of clustering, take a quick look at our playground:

In this dataset, we grouped together similar players with similar statistics. From here, we can tell which players are actually similar and new types of players that can emerge.

We take the player closest to the center of the cluster in order to represent the cluster by name only. From there, we take the average of the cluster and note the general statistics of the group. We can make comparisons to groups of players similar to Chad Prince and compare them to players like Simon Elliott.

🔍
Looking at this cluster of players who are similar to Chad Prince
Groups of players like Simon Elliott
Relevance AI - Dashboard
Logo