Assumed Knowledge: Vectors, Vector Search, Python (Basic level)
Target Audience: General developer, Data scientist, Python developer
Reading Time: 5 minutes
Requirements: Python 3.6 or Python 3.7
Below, we build a simple example of image search with Vector AI
We get the data on a document-based approach.
collection_name = 'pokemon_images'
documents = []
for i in range(1, 20):
documents.append({
'image': 'https://assets.pokemon.com/assets/cms2/img/pokedex/full/{}.png'.format(f'{i:03}'),
'pokemon_id' : str(i),
'_id': i
})
2. We encode the images and instantiate the Vector AI client. If you do not have a username or API key, simply request one Pythonically from this link.
from vectorai.client import ViClient
vi_client = ViClient(username, api_key, url)
from vectorai.models.deployed import ViImage2Vec
image_encoder = ViImage2Vec(username, api_key, url)
for doc in documents:
doc['image_vector_'] = image_encoder.encode(doc['image'])
3. Add your documents to your index using insert_documents.