Guide To Vectors
  • Introduction
  • Guide to this Book
  • API documentation
  • Python SDK Documentation
  • Learn about vectors
    • 🌱Introduction to vectors
      • 🌱Applications of vectors
        • 🌱Vectors for classification
      • 🌱Limitations of vectors
    • 🌱What is vector search?
      • 🌱How to vector search
      • 🌱How to build image to text search using code
      • 🧍Try vector search with playground!
      • 💻Vector search with code
    • 🌱Terminology Guide
  • Unlock Vector AI
    • 🔍Inserting Into Vector AI
      • 🧍Inserting with playground
      • 💻Inserting with API
        • 💻Inserting with API - encoding while inserting (recommended)
        • 💻Inserting with API - encoding before inserting
        • 💻Inserting with API - encoding after inserting
      • 🧍How to check insertion succeeded
    • 🔍Searching with Vector AI
      • 🌱How to search with the playground
      • 🌱Combining with traditional search
        • 🧍How to combine exact text search with vector search
        • 💻How to add exact text search to vector search
      • 🌱Personalisation with vector search
        • 💻Personalised search/recommendations with vector search
      • 🌱Chunk search
        • 💻How To Chunk Search
        • 💻How To Do MultiVector Chunk Search
        • 💻How to do multi step chunk search
      • 🧍How to diversify search results
    • 🔍Clustering
      • 🌱Clustering Vectors From Deep Learning models
    • 🔍Aggregation
      • 💻Writing Your First Aggregation
      • 💻Publishing Your First Aggregation
    • 🔍Experimentation
      • 🌱Vector Evaluation
        • 🌱Evaluate Vector Bias
    • 🔍Jobs
      • 💻Tagging Jobs
      • 💻Chunking Jobs
      • 💻Encoding Jobs
      • 🧍List all jobs (active and inactive)
    • 🔍Encoding
    • 🔍Maintenance & Monitoring
      • 🧍How to view your collections
      • 💻How to share your collections
      • 💻How to back up your collections
      • 💻How to change name of a collection field
      • 💻How to change the schema of a collection
      • 💻How to remove a field in a collection
      • 💻How to request a read API key
  • Tutorials
    • 💻How to turn data into Vectors (code)
      • 💻How to turn text into Vectors
      • 💻How to turn images Into Vectors
      • 💻How to turn audio into Vectors
    • 💻Image Search For Developers
    • 💻How To Combine Different Vectors For Search
    • 💻How To Combine Different Vectors With Exact Matching Text
    • 💻Semantic NLP search with FAISS and VectorHub
  • ABOUT
    • Credits
    • Philosophy
    • Glossary
Powered by GitBook
On this page

Was this helpful?

  1. Learn about vectors

Introduction to vectors

An introduction to vectors

PreviousGuide to this BookNextApplications of vectors

Last updated 4 years ago

Was this helpful?

Assumed Knowledge: Vectors Target Audience: General Audience Reading Time: 3 minutes

What are vectors?

Vectors are a list of numbers that meaningfully and uniquely represent data. See below for an example.

[0.324, 0.241, 0.934, 0.424, 0.141, 0.242] #example of a vector

Although vectors may look like a series of random numbers, they are actually the result of carefully constructed and trained artificial neural networks (more details below).

Think of vectors as the fingerprint of data. Much like how everyone has their own fingerprint, every piece of data (whether it is an image, video, text or audio) has its own vector.

How are vectors constructed?

Vectors can be constructed from: 1) A row of data (for example - the machine learning model is an excellent example 2) Extracting a layer in the middle of a neural network

Neural networks allow us to provide a new way to see the work done.

🌱
Vectors are much like fingerprints of data.
We can extract vectors from neural networks